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Abstract

This paper presents a valence approach for assessing multi—
attribute uttlity functions. Unlike the decomposition approach which uses

• independence axioms on whole attributes to obtain utility representations,
the valence approach partitions the elements of each attribute into classes
on the basis of equivalent conditional preference orders. These partitions
generate multivalent utility independence axioms that lead to additive—
multiplicative and quasi—additive representation theorems for multiattribute
utility functions defined over product sets of equivalence classes. Pre-
ference interdependencies are thereby reflected in these classes, so attri-
bute interactions are readily interpreted and the functional forms of the
representations are kept simple.

AMS 1970 subject classification. Primary, 90A10. Secondary, 90D30.

~AOR .7973 subject classification. Main: Decision theory.

Key words. Decision analysis, utility theory, multiattribute, preference,
interdependent, valence.
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1. Introduction. The principal aim of utility analysis is to obtain a mathe-

matical representation of preferences tha t will aid in the evaluation of risky

decisions. A predominant theme in multiattribute utility theory for more than

a decade has been the decomposition approach. Given various independence

assumptions, this approach prescribes how to divide the assessment of a multi—

attribute utility function into several steps requiring the determination of

scaling coefficients and the estimation of conditional utility functions invol-

ving one or more attributes. Farquhar [6] reviews independence axioms and

corresponding multiattribute utility representation theorems; further details

are in [3—5 , 10, 13—26].

This paper presents a valence approach for assessing multiattribute

•1 utility functions. Unlike utility decompositions which rely on independence

axioms defined on whole attributes, the valence approach partitions the ele-

ments of each attribute into classes on the basis of equivalent conditional

preference orders. Multiattribute utility representations are derived over a

collection of subspaces determined by these partitions.

Af ter introducing basic terminology , multivalent preference struc-

tures, and independence axioms, we establish a representation theorem for

two—attribute utility functions using multivalent utility independence. We

show that a structural assumption called uniform preferability greatly simpli-

fies the assessment of multivalent representations. We then extend these

basic results to n—attribute representation theorems: first, by using joint

multivalent utility independence assumptions, and then by using a special

form of individual multivalent utility independence.

I



1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Let X denote the outcome space in

a decision problem , and let P denote the space of all simple probability dis—

• tributions ( ‘ r ~~ ’) over X. Let ~ denote a preference order on P satisfying

the von Neumann—Morgenstern axioms (12 , 27!. Hence, there exists a real fun’tion

u on X , called a uti~~t~. ‘
~ :~‘ti ”t for > on P. such that for all p, q C P,

p ) q t f f  ( if and only if )  ~~~~ p(x)u(x) ~ 
Z~~~~ q(x)u(x).

Suppose for simplicity that X — Y X Z , where Y and Z are attribute

sets each containing •~t least two elements. Let P,~ denote the set of all

simple probability distributions on Y. The (single—element) ‘ !f t ? ~’~:aZ ; ‘
~~
.‘—

~~~~~~~~~~~~~~~~ ~r~kr >. induced on P,~, by the preference order > on P and a fixed

element z C 7. is defined by

p,~, > q
~ 

iff (pr, a) >‘ (q~
, a),

where p
~ , q.~ ~

- P,~,.

One way of descr ibing how preferences for lotter ies on Y depend on

elements in 2 is to partition Z into classes corresponding to the distinc t

conditiona l preference orders induced on P,~.

I)t’t t u I t i on 1: 1 
The rauZtivalen~ preference etructure e ’f Y ~fre’: 7. is defined

by 1, [Z~) where for some nonempty index set ~

~~ 
{ 

~~~: j c ) denotes a collection of

distinc t preferenc e orders, called base orders, on

• P~ ; and

1
Our terminology is motivated by certain theories of molecular structure
in physical chemistry .

-~~ ~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ — ~~~~~~~~~~~~~~~ •,
~~ 

. 
~~~~~~~~~~
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(ii) [Z] (~~ : j c ~ 
} denotes a partition of Z into

nonempty classes, called orbitczls, such that — >~

for all a c and j c

Thus two elements a ’ and z” in Z belong to the same orbital if f )~, —

on P.r. Instead of using conditional preference orders to determine [ZI,

we can obtain the same partition by using strategically equivalent condi-

tional utility functions on Y [8).

Valence refers to the cardinality of [Z). At one extreme, the

preference structure is zsnivalent if [Z) — {z}; Y is utility independent of

Z in this case (see Definition 2). At the other extreme, the preference

structure exhibits complete utility dependence of Y on Z if 12) consists of

• all single—element subsets of Z. Multivalent preference structures, there-

fore , cover an entire spectrum of interdependencies between attributes.

- Practical illustrations of multivalent preference structures are

easy to find : for example, the evaluation of changes in a portfolio when

balance or complementarity among the items is important [3, 7, 9]; the

evaluation of multi—period income streams given past income levels when

Enter—temporal dependencies exist (1 , 11, 13, 22 , 231; and many others

[e.g., 3, 7, 8, 9, 11, 16, 22].

3. inde~gndence a2c~~~~ Pollak (25], Keeney [17—21], Raif fa  (26 ) ,  and

others have used the following independence axiom to develop multiattribute

utility decompositions.
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~g~~nition 2: Y is utility independent of  Z, denoted Y (UI )Z , if f there exists

a preferenc e order on P,~. such that — >1 for all z C Z.

• We note that if ‘1 is not utility independent of Z, then there are at least

two distinct conditional preference orders on

~~~~nition 3: Y is multivalent utility independent of ( Z ] ,  denoted by

Y ( U I ) [ Z ) ,  if f there exists a collection of base orders euch that Y given

2 has the multivalent preference structure (Y, I2~, [2]).

An analogous definition holds for Z(UI)[Y].

Since von Neumann—Morgenstern utility functions are unique up to

positive linear transformations and since Y(UI)[Z] implies Y is utility inde—

• pendent of the restriction of Z to ~ for all Z C [Z] ,  it is trivial to establish

Lemma 1: Y(UI)[Z] if f (Z] is a partition of Z such that for all Z C [Z],

z C Z iff  u (y, z) — ct
2(z) + 82(z)u(y, 

2) for all y C Y , (2)

where 2 is fixed arbitrarily in Z, and and are real func tions on Z

with~~2
>O.

Analogously, Z(Ul)[Y] 1ff [Y) is a partition of Y such that for

all~~~C (Y],

y £ iff u(y, z) — ~1(y) + B1(y)u(9, 
z) ~r all z c Z, (3)

where 9 is f ixed arbitrarily in Y, and and are real functions on

Y with 
~l 

> 0.

~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~: ~~~~~~~~ .. ~~~~~~~~~
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i
~~2~jit uuiitv representations with two attributes. This section

establishes a representation theorem for multivalent preference struc tures
2involving two attributes.

THEOREM 1: Let u be a von Neumann—Morgenstern utility function on the outcome

space Y x z• Suppose Y(lJI)[Z] and Z(UI)[Y]. Then there exist real functions

a1 and 81 on Y with 81 > 0, real func tions a2 and 82 on Z with 82 > 0, and

constants ~ depending on only the sets Y X Z , where Y C [Y] and C [Z] ,  such

that u has one of the following additive-multiplicative representations for
A

all y c Y and z C Z:

u(y,  z) — a
1
(y) + cL

2(z) + u(9, 
2) ,  (4a)

u (y, z) = cz
1(y) + 81(y)u(9, 2), (4b)

u (y, z) = a
2
(z) + 82(z)u(9, 

2), (4c)

u(y, z) = + 81(y)82(z)(u(9, 2) — 

~J . (4d)

Proof: For simplicity, let a1, ~~~ a2, 82, G, and u represent

81
(y) , ct~(z), 82

(z ) ,  u(9, 2), and u(y,  z),  respectively. Since Y(UI)[Z] and

Z(UI)[Y], Lemma 1 yields (2) and (3). If we let z = 2 in (3) and substitute

the result into (2), and likewise let y — 9 in (2) and substitute the result

into (3) ,  we ob ath the following equations on Y X

u — a2 + 82a1 + 8182G — a1 + 81a2 + 8182G

• 2Results essentially equivalent to Theorem 1. were obtained independently by
Farquhar [3] and, in a different context, by Meyer (23]. The proof of
Theorem 1 given here , however , is substantially shorter and simpler than
earlier proofs; more importantly, it generalizes from two to n attributes
to yield further representation theorems.

-
~: ~~~~~~ ~~~~~~~~~.



~ 
~~

- -  

r~ _J~~~j,~~.- . .~~~~~~~~
- :

— 7 —

The proof involves four cases which depend on whether or not

or 8., equals one for equivalent elements:

~~~ (8
1 1 on Y and 82 1 on Z):  The equa tions in (5) give

u a + ~~2 
+ i.3 when 1 and 82 

E 1, so representation (4a) is immediate.

Case 2 (8
~ 

1 1 on Y and 62 1 on ~): Since 82 
1, (5) yields 6

1
a2

But ~ 1 on Y implies that a2 0 on Z. Thus (5) gives u — + 8
l~
.

which is (4b).

Case 3 (8~ 1 on Y and 82 / 1 on ~): By analogy with Case 2, we obtain

“1 
0 on ~?. Thus (5) gives u — a2 + 82G, which is (4c).

~~~~~~~~~ “ 1 1 on Y and 8
2 / 1 on Z):  In this case , (5) can be rewritten

as
ci ci

1 — 2 (6)

Since the left side depends on only y, the right side on only z , and equality

holds throughout ~ and Z , both sides of (6) must equal a constant, say k.

Thus (6) implies 
~~ 

— 
~
(l_6

i
) on and a

2 — 
~
(l—B 2

) on ~ . These results

combine with (5) to give u — + 8182 [G— ~], which is (4d). S

5.•~~ ~~~~ e~a~j~ n of tjeJ’,~~ The multivalent utility representations in

Theorem 1 require the assessment of the functions a
1

(y) , $
1

(y) , c1
2

(z) , and

• 
~ ,(z). We present the assessment for just a2 and 82~ 

since the assessment

for ci
1 

and B
~ 

is completely analogous.

I

U
4,  

—,•

~~~~
--— —
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Except in the trivial case where 4 on P,~ (and a represen—

tation for u is therefore immediate), we can choose y
0
3 and y

1
1 in Y such

• that (y
1
i , 2i) > (y

0
i, 2i) where 2~ is arbitrarily fixed in for all j C

Successive substitution of y
~~ 

and y1~ into (2) yields two equations that can

be solved for ci
2 
and 8

2 to give

• ci
2

(z) - a2~u(y1~ , a) + (1 - a
2~

)u (y
0~, 

z) for z c 2~ , (7a)

82
(z) — b

2~
(u (y

1~ , 
z) — u (y

0~
, z) )  for z £ Z3, (71’)

where a
2~ 

-u(y
0~
, 2~ ) / ( u (y

1~ , 2
J ) - u (y

0~ , 
2~ ) )  and b2~ l/ ( u (y

1~ , 
2~

) -

u(y0~, 2i)) for j C

The expression for 82 in (7b) reveals the presence (or absence) of

a restricted form of additivity in the multivalent representations of

• Theorem 1. For example, if 8
2

(z) E 1 on Z , then (7b) implies

z) — u (y0, a) — u(y1, 2) — u(y0, 2), (8)

A A

for  all a , 2 c 2. Since Y is util i ty independent of 2 , it is easy to ver i fy

cha t (8) holds for all y0, y1 C Y. On the other hand if 82 1 1 on ~, then

there is at least one pair  y0, y1 £ Y for which equali ty fai ls  in (8). There-

fore given the assumptions of Theorem 1, Y and Z are additive independent

[6 , 7, 10, 12 , 14, 20, 22] iff 82(z) 1 on 2. A similar statement holds

for t3.~ as well.

One readily notes the effect of this restricted form of additivity

in the four representations of Theorem 1. The additive result in (4a) is

obtained when B
~ 

1 and 82 1, while the multiplicative result in (4d) is

• . ~~• • 
, 

• 
.
, — -

~~~~~~~~ • ~~~~~~~ ~~~~~~~~~~~—-
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obtained when 1 1 and 82 ~ ~ The results in (4b) and (4c) are additive—

multiplicative representations obtained when exactly one of the two 8’s is

unity.

6. S1rnp11fyin
~&the assessments. The representations in Theorem 1 have

simple forms, but complete assessment of a two—attribute utility function is

complicated by the number of conditional utility functions required to deter-

mine the a and 8 functions. In an extreme case, one pair of elements in Y

serves all orbitals in [Z], so only two conditional utility functions are

needed on Z.

Definition 4: For y0, y1 
c Y, y1 is unifor~nly preferable to y0, denoted by

y1 >~ y0, iff (y1, z) > (y0, z) for all z e 2.

An analogous definition obviously holds for z
1 >~

. z
0
.

We observe, that uniform preferability is much weaker than the axiom

of preference independence [6 , 15, 22]. For example, Y preference indepen-

dent of Z implies that the preference (or indifference) relation between ~~~

pair of elements in Y holds uniformly for all elements in Z; uniform prefera-

bility, however , considers only one pair of elements in Y. Furthermore when

Y ( U I ) [ Z ] ,  we note that y
1 ~ > y0 1f f  (y1, 2i) > (y 0, 2i) where is arbi-

trarily fixed in for all j C ~. Thus instead of checking all elements in

Z, uniform preferability can be tested by considering just one element from

• each orbital in [Z) when Y(UI)[Z ].

We now state a fundamental result.

- - , • .- . .- . . .. *- . • - • - • .. - .- .~-•
.

~ 

~~~~~~~~~ - - • - -
. 

____

IL..-. -s-- ~~~~~
‘“
~~~ 

- 
~~~~~~~~~~~~~ , .~._..- ... -., - ~~~~~ ~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~~~ ~~~~~~~~~



LII Let YII [Z] and Z(uI ) [ :]  If there exist y0, y Y  and

Z 0, a 1 C 2 such that y
1 )> y

0 
and z1 ) >  a0, then a von Neumann—Morgenstern

u t i l i t y  function u on Y X 
~ has one of the additive—multiplicative represen-

tations in (4) on each 9 x 2 , where 9 c [Y] and Z C [Z], and u is completely

specified by four conditional utility functions u(y0, z), u(y1, z), u(y, z0),

u(y, z
1), and the utilities assigned to the representative outcomes

(9, 2) c 9  ~ 2 for each 9 ~ (Y] and 2c  [a]..

Proof: Since Theorem 1 holds, y
1 >~ 

y0 
implies that equations (7a) and (7b)

can he simplified as follows,

ci2 (z) = 2
2’~’(y1, 

z) + (I — 22
)u (y 0, z) for a C Z , (9a)

= ~2 (u(y 1, z )  — u ( y 0 , z))  for a C 2, (9b)

where —u(y 0, 2) / (u ( y 1, 2) — u(y0, 2 ))  and b
2 

l/(u(y1, 2) — u(y 0, 2 ))

for  a fixed representative 2 C 2 , f o r  all Z C [2]. Thus and 69 a..e coin—

pletel y s p e c if i e d  by u ( y 0, z )  and u (y 1, z) on Z. Similarly, a1 
and Bi, are

completely specified by u (y ,  a0) and u (y ,  a1) on Y when a1 ).> z0. Therefore,

the representations in (4) are determined by these four conditional utility

‘functions and the utilities of (9, 2) C ‘f x z for each Y c [‘11 and 2 C [Z]. •

If Y (U 1)Z in Corollary 1, then only u(y, z
0

) is needed on Y , because u(y, a
1
)

can be derived from u(y, z
0) by an appropriate positive, linear transfor—

mation. Similarly, if Z(U I )Y in Corollary 1, then only u (y 0, z) is needed on Z.

• 7. One—way ~~~~~~~~~~~~~~~~~~~~ This section illustrates the cross—over

• effect that a univalent preference structure on Y has on the preference

• I .•.— .. • -~~~~~~.• . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
• 

‘~~~ 
.
-~~~~

• - 
2,~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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st ru .ture on 2 Let Y(U l)Z , but not 2(111)? If Y is essenti~al (1 e

t~ on P,~, for some a C Z), then there exist y0, y1 C Y such that y
1>> y0.

Without loss of generality, let z
0 be a representative of Z and scale u so

that u(y
0
, a0

) — 0 and u(y1, a0) = 1. Thus (9a ,b) gives cx
2(z) u(y~ , z)

and ~32(z) = u(y1, z) — u (y 0, a) for a C 2 , so by (2) and Corollary 1,

u (y ,  z) = u (y 0, a) + (u(y1, a) — u(y0, z))u(y, a0), (10)

for all y U Y and z C Z. One conditional utility function on Y and two con-

ditiona l utility functions on Z therefore determine u when Y(UI)Z and Y is

essential. (See also Keeney [18, 19, 22] and Nahas [24].)

Before stating the next theorem, we make the following definitions.

Let the dual order >
* of a preference order > on P be defined by p q

1ff q ) p where p. q £ P. Z is generalized utility independent of Y,

denoted Z(CUI)Y , 1ff there exists a nonempty preference order on P
2 

such

that > C 
~ >o, >o~ , ~~ °~ P~’ for all y C Y. Generalized independence

• thus allows conditional p reference orders which are e i ther  ident i ca l .  to a given

base order , complete reversals, or complete indifference.

THEOREM 2: Let Y(UI)Z. Suppose there exist y0, y
1 

C Y satisfying (i) unifoY~n

f i l~~1z~ty: (y 1, a0) >. (y0, a0) for some z0 C Z, and (ii) strategic

~a J 1 f ,7:  ). C { >. , >~~
, 4} on P~ . Then the preference structureyl Y O Y O 

*(2, c~,, [Yl) is at most trivalent and { >‘.
~
, >b , q~), where >0 is a

nonempty preference order on

Proof: Y(1JI)Z and (y1, z0
) > (y0, a0) for some c Z imply (y1, z) >

(y0, a ) f or all z c Z , hence (10) holds. If ‘
~~ c C , > * , 4}, thenyl YO YO

— .
~ - 

I 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A

4~ L.~i
_
~ ~~~~~~ “.A.ii~?,~F ~~ .~~, L.., ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ‘~~~~~~
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there exist e nat an t s  a and b suc h tha t u (y 1. a) — a + h u(y
0
, ~ ~~ al l

r lt~]. )lv Corollary I tn keeney (19j, these two results imply

y , a)  — u (v . a0) + u(y0, a) + k u (v, a
0~u(y0, a) • (ii

(or i l l  v t \‘ and t .~~. where k is a constant . By Theorem 2 .1 In Fishhurn (141,

the  repr i ’sentnt  ton in ( I I )  implies Z ( G U I ) Y ;  therefore . >~, >
* ~

or s1’m~ nonemptv prt ’fer enc~’ order >~ 
on P2 by earl icr definitIons. U

Mu It .‘ t r I ho Ii ’ ~~~~~~~~~~~~~~~~~~~~ i~nkniuitivalcnt ut ii i t y  I ut Iep t ’ndcu ~’t•

i t t  I ‘.e. t t en  eSt  ends t he add it ive—mu l t Ipi tent ivu representat  tons in Theorem I

-• 
- t t o r n  wo at  t rjhutes to n a t t r i b u t e s .  Let X . . . ‘ X he’ t 1w out ~‘omi

splice , and le t  N ( I , . . . , n )  . Let X
1 

X 1 ~ . . . ‘ X~~ 1 ‘ . . • ‘~

N. W I t h  ~ and Z — for I N, lemma I g ives  t h e  t o t l o w i n g :

• x1 ¼ 1 i I it (X
1 I is a pat it Ion of such tha t I or a t I ( X ~ I,

x~ X 1 I C C  u(x
1
, x1) - ~~~~~ + ( x u ~~~~ x~~ ~~~

tot a l t x1 t ’ where is f ixed  a r b i t r a r i ly  in X~ , and and are rea l

t ui~ t ions  on w i t h  “ 0. By definiti on , ,~‘i’:t “‘:, : ‘ : .‘‘~~ : . t  ~
‘ 
.
‘ 

~~~~ :~~:,~~,
‘—

• ho 1 ds on X I I I (U 1)1 X~ ) for  a l l  I t N.

Let x° (x
1
0
, . . . ,  x °~ and x

t — (x
1

1’ , . . . x 1) denote d ist m e t

‘‘titceme’s in X. Let x (T) (x1
°, . . . x~_ 1

0
, Xj+l

°
~ 

. x )  where o i (0, 1) ,

to t ’  I N. Then X
(1)

1 
iS :~~P f~’t~n!~ ~~~~~~~~ to x~~~~~, w t t t t e n  X

(1
~~ >~ 

X
(1)

~~~~~

• l i t  (x 1 , X
(1)

1
) > (x 1, X(1)

) for a l t x 1 X~.

TIWOREM 3: Suppose there ext st x0, x
t 

t X such I hat  
~~~~~ >> ~ 

0 I I

I N. It X~ (I1 t ) I X 1 ) t i t r  t i l l  I , N , then a von N eitmann— M or gi n s t er n  ut  I i  li v

L

, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Ii, ~~~~~~~~~~~~~~~~~~~~~~~
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function u on X has one of the following representations on each ~~ ‘< 
~~~~~ ‘

for c [X
1 ], I C N:

x )  — n
1

(x
1
) + ... + a ( x ) + u(~ 1, . . .,  x ) , (13a)

u(x 1, . .. ,  x )  — ci
~

(x
~

) + 
~~~~~~~~~~~ xt ) for some t C N, (lJb)

u(x
1
, • . . , x )  + 81(x 1

) S B ( x ) [u (~ 1, •~~ ‘ 

~~ 
kj, (lie)

where and B~ satisfy

0 1 1 A 0x ~~ )u (x ~ , x j )) — u ( x
1, x 1) ) u(x~~ x

a
1

(x
1) — 

A i A 0 ~ , and
u (x~, 

~(i)~ 
— u(x 1, X

(1)
)

- ~~~
1e ) ) - u(x1, x~j~

) 
, (14b)

-

• 

~~~~ X
(i)

) — ~~~~~ X
(~~)

)

for x
1 

C X1, where is a constant depending on only the set ~

Proof: Let 
~~~~~~ ~~~~~~ 

u(x), u(~1, x1) ,  u(x1, ~~, x1~) and u(~ 1
, . . . ,

be represented by ni,, ~~
, u , 

~~
, Q

1~~, 
and G, respectively . Since X1(UI)(X~ 1

• for all I C N, induction on (12) for I C N gives

— a1 + 13
1
a2 + 61~2a3 + ~~ + ~l ~ ~n—l% 

+ •‘‘ j3 ti . ~l ’~

Following the proof of Theorem 1 one can show that for any d i s t inc t  I , ,t e N ,

( 12) implies

• 
+ ~~~ — + . t~li~’h



• ~-—.-
~
—

~—-.--~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ —~~~~~~~
-
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- 
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• The proof divides into three cases:

C.~ase l (8~ 1 on for all I C N): Equation (15) gives (13a) immediately.

c~~~~~2 (Bj E l o n ~~1 for a11 icNexcept i .i t): If8
1~~~1 and j = t i n

• (16), then a
1 

a B~
c.t1 for all I ~ t. Since 7 1 on X~, it follows that

a
1 0 on for all I # t. Thus (15) yields u + ~A ’ which is (l3b).

1 ~~~~~~ (B~ 
E 1 on for all I C N except I C T, where ITI ? 2) :  With no loss

• in generality, relabel the attributes so B.~ 7 1 for I C {l, . . .,  r) and E 1

for I C {r + 1, .. .,  rt} , where IT! r and 2 ~ r ~ it . When i = 1 and

,j c Cr + 1, . . .,  n}, (16) yields 8~ci~ = ct~. Since 8
1 7 1, 0 on X . by pre-

vious arguments. On the other hand, for distinct 1, j c Ci , • . . ,  r } , (16) gives

— B .) = ct~/ (l  — B~) which equals a constant , say k , for the reasons

following (6) . Thus , a1 
E ~ (l — B

~
) on 

~~~

. for I C Ci, ... ,  r} and a1 0

on X1 for I c Cr + 1, . . .,  n}. Substituting these results into (15) yields

• u ~(1 — B
~
) + 81

k(1 — 82) + ~~~~ + B~ Br i~
O — B )  + 81 Br

U
~ 

which

reduces to u = k + 81 8r~~ 
- It). Since B E 1, an equiva-

lent expression is u + 8~ (G — 

~) ,  which is (13c).

Since X (j )
1 >> x(1)0~ the expressions for ct.~ and 8~ in (l4a,b) are

obtained by solving the equations generated by alternately putting x1 — x(1)
and x1 - X (1)~

’ in (12). U

• The assumption of uniform preferability in Theorem 3 can be dele ted

in a straightforward manner, but this generalization is not pursued here. We

L note that the additive—multiplicative representations derived from Joint

multivalent u t i l i t y  independence and uniform preferability assumptions require
• 1

1

~ 

_____ 

___
____________________________________________________________

____ - 

~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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at most two conditiona l utility function8, u(x1, X
(1)

) and u (x
1
, X

(1)
)~ for

each ol n attributes. The utilities u(~1, ... ,  Q )  are needed for consistent

scaling, tOO .

4. MuIt .Lattr tb~te rç~p ~~~n2 co~~~j~~iv~~ ~u~~~ V~~~~j~~~~LLty

in~dt~2trtdtn~t Jndtvidual rnult~valent uti~Zity i.ndependence holds on X ~f ~
X 1

(U1)()(
1] for all I C N. Individual independence, however, allows partitions

ot  that may not correspond to any øet of partitions for the single attri-

butes. ~~
‘ r t : 1 : t ~’ :~t multivalent utility independenee holds on X 1ff

X[(U1)IX (1)) f or all I C N , where [X a) J (x1] 
X 

~ 
(
~~~1

) X IXDII

~ ( K I for I £ N , wher e [X 1 I , . . . , l x] tire part i tiens of t he  I nd l v i  dna I -

attributes. Correlative independence simplifies the derivation and inter—

pretation of multivalent utility representations because a meaningful orbital

structur e is assumed on each attribute.

In the next theorem, let (x
1
, ~(j)) denote (~~ , 

~~~~~~ 
~~~~ 

x1, 
~~~~~~~~~~~

where x1 c X1 and , for j # i, e and i: [X ~ j .

0 1 1 0THEOREM 4: Suppose there exist x
1 , x1 C X1 such tha t x1 >> x1 for all

I N. If X 1(UI ) [X (j ) 1 for all i c N , then a von Neumann—Morg enstern u t i l i t y

func t ion u on X has a multivalent quaai-addit ive repreaentation on each

• X 1 
x x 

~~
, where X

1 
C (X 1) for I r N,

u(x1, . .,  x )  
~ {c~~~~~1 u

1
(x

1
, ~~~~ ) U

1
(X

1
, 

~~~~~

1 ~ < 1
r ~ 

n, 1 ~ r ~ n }, (17)

where the standard scaling constants c are defined by
~1 1r

• 
~ ~~~~~~~~~~~ 

‘ , M ‘~~~ S~~~~’ ~~~~~~~~~~~~~~~~~~~~

• .•~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ J~~~~~~~~~~ -~~
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~ {(— l)~~~~~ u(x1
1, . . .,  x e): C (0, 1) if

j C (i1, ••
~~ 

i~}, a~ — 0 otherwise), (18)

and the normalized conditional utility func tions u
1

(x
1
, 

~(i)~ 
on X

1 
are given by

• u(x1, i — )  — u(x 0
, i — )

u~ (x~. ~a)~ — 
1 

~1) 1
0 A 

• (19)
u(x~ , x

(i)
) — u(x~ , X CI))

Proof: By Lemma 1, Xj (UI)[X (1) ] for each I C N impl ies

x )  — a1(x1) + 81(x1)u(x1, x (i) )
~ 

(20)

on X1 
x X (j )~ where is a representative of for j  # i.

1 .Define constants a1 —u(x 1 , x(1))/ (u(xj , x(1)) — u (x
1 

X
(1)

))

and b~ i/ (u(x1
1, 

~(i)~ 
— u(x~°, ~(I)~~ ’ and abbreviate the functions

u(x 1
0, x1), u(x 1

1, x1) by u1° and u1
1, respectively. By alternately putting

x1 = x1
° and x1 = x1~

’ in (20) and then solving the resulting pair of equations,

we obtain a1(x1) — ~~~~~ + (1 — a
1

)u
1
° and 81(x1

) C1(u 1
1 

— u1
0) for

x1 C X (j~ and I C N. If we denote u
1(x1, ~(j ) ) by G~ in (19) , then (20) gives

• u(x1, .. .,  x )  = [a1u1
1 + (1 — ~~)u

1
0] + (~1(u

1
1’ 

— u
1
0)] u (x1, ~(i)~

~~ 
+ ~~u(x~, x~~~~)]u

1 
+ — + €~u(x~ X

(i)
))J U

i

— u1u (x1 , x1) + (1 — u~)u (x
1 

, x1), (21)

for x1 C X1, x1 C X (j~~ I C N.

_________  ______ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~ ~
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We finish the proof by successively substituting (21) into itself

for i — 1, 2, . . . ,  n. First , put I — 1 in (21) to obtain

A 1 A 0u(x1, . . . ,  x )  — u
1
u(x

1 , x2, ...,  x )  + (1 — u
1
)u(x

1 , x2, . . . ,  x )

Then put I 2 in (21) and substitute the result into (22) to get

u(x , x )

1 1 A 1 0u [ u ,u ( x
1 
, , x 3, . . . ,  x )  + (1 — u~ ) u (x

1 
, ,

A A 0 1. - 0 0÷ ( 1  — U
L
) 

2
U ( X

1 
, , x3, . . .,  x )  + (1 — u~~u(x1 x~ , x3, .. ., x)j

= Q1G2u(,1
1, x2

1, x3, .. .,  x )  + 
~i

(1 — ~2)u(x1~ , x2
0, x3, . . .,  x )

0 1
+ (1 — u1)u2u(x1 , x2 , x3, ~~

• •
~~ 

x~ )

+ (I — G1)(1 
— ~2 )u(x

1
0 , x2

0 , x3, . .  ., xe). (23)

By induction on I c N, we obtain

. . . ,~~~~~~~)

~ (u 1 
. • S A

°fl u(x 1
1, .. .,  x~~~): a~ e (0, 1] , 1 C N}. (24)

where x
1 

u X1, and 
A l  - A A U  1 — G~, for I C N. The form in (24) is

equivalent to the quasi—additive representation In (17) [b, 20). U

If the valence of [X
i
) is ~~ , then at moat !1~~ . ~~~~ conditional

• utility functions on attribute X~ for I. C N are needed to assess the quasi—

add itive representation in (17). On the other hand , the additive—multiplicative

• I

~~ -

• -

~ ~~~~~~~~~~~~~
-
~~~~

- -

~~~~~~~~~~~~~~~~L 
•
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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representations in (13) require a total of no more than 2n conditional utili ty

- ~
- func tions regardless of the valences.

•lO~~~~~~cluJ3tpn~ . The valence approach differs from previous methods of

obtaining decompositions of multiattribute utility functions. By partitioning

the elements of each attribute into orbitais on the basis of equivalent condi—

tional pref erence orders , we obtain utility representations over a collection

of subspaces determined by the orbitals. Preference interdependencies are

reflected in the orblttils , so attribute interactions are readil y interpreted

and the func t ional forms of the representations are kept simple. We illustrate

this approach with multivalent utility independence axioms that generate severa l

• utility representation theorems. In one case, we use a minor structural assump—

t ion and joint multivalent independence to derive a set of additive—multi pl icative

representations that require at most two conditional utility functions on each

attribute. Several other results are also established . Further research on

multivalent preference structures with other independence axioms is in [81.
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